ASYN/StreamDevice
Support Frameworks

Eric Norum

I\s{‘g ASYN/StreamDevice

ASYN

What is it?

What does it do?
How does it do it?
How do | use it?

!q‘.[s ASYN/StreamDevice

What is 1t?

Asynchronous Driver Support is a general purpose
facility for interfacing device specific code to low
level communication drivers

!S”[s ASYN/StreamDevice

asyn Architecture

Device support (or SNL code,
another driver, or non-EPICS
software)

asynCommon ' Inter.faces (narn.ed; ' asynOctet (write,
(connect, report, ...)y Pure virtual functions)y read, setinputFos,...)

Port (named object)

Port driver

addr=0' addr=1 I

device device

m‘m ASYN/StreamDevice

CIRAS

Control flow — asynchronous driver

Code running in
application thread

Code running in
port thread

Record .!.“:uppnrt

= =

J\ i ?(ﬁ)E

| 5(’

ASYN
3 4
H““t A Work Queue &

Record Device Support ;’
= X
(

Low-level Driver ;

=

m{‘g ASYN/StreamDevice

CIRAS

Control flow — synchronous driver

All code runs in
application thread

Record Support

- y_.

\.,E Record Device Support f

X Pt

Low-level Driver %

I\H’l‘g ASYN/StreamDevice

ASYN Components — asynManager

Provides thread for each communication interface

— All driver code executes in the context of this thread
Provides connection management

— Driver code reports connect/disconnect events
Queues requests for work

— Nonblocking — can be called by scan tasks

— User-supplied callback code run in worker-thread context
makes calls to driver

— Driver code executes in a single-threaded synchronous
environment

Handles registration
— Low level drivers register themselves
— Can ‘interpose’ processing layers

!S”[s ASYN/StreamDevice

ASYN Components — asynCommon

* A group of methods provided by all drivers:
— Report
— Connect
— Disconnect
— Set option
— Get option
* Options are defined by low-level drivers
° e.g., serial port rate, parity, stop bits, handshaking

!s’[s ASYN/StreamDevice

ASYN Components — asynOctet

Driver or interposed processing layer

Methods provided in addition to those of asynCommon:
— Read

— Write

— Set end-of-string character(s)

— Get end-of-string character(s)

All that's needed for serial ports, ‘telnet-style’ TCP/IP devices,
USB-TMC.

The single-threaded synchronous environment makes driver
development much easier

— No fussing with mutexes
— No need to set up I/O worker threads

!s’[s ASYN/StreamDevice

ASYN Components — asynGpib

* Methods provided in addition to those of asynOctet:
— Send addressed command string to device
— Send universal command string
— Pulse IFC line
— Set state of REN line
— Report state of SRQ line
— Begin/end serial poll operation
* Interface includes asynCommon and asynOctet methods

— Device support that uses read/write reguests can use
asynOctet drivers. Single device support source works with
serial or GPIB.

!s’[s ASYN/StreamDevice

ASYN Components — asynRecord

Diagnostics

— Set device support and driver diagnostic message masks

— No more ad-hoc ‘debug’ variables!

General-purpose 1/O

— Replaces synApps serial record and GPIB record

Provides much of the old ‘GI’ functionality

— Type In command, view reply

— Works with all asyn drivers

A single record instance provides access to all devices in |IOC

!s’[s ASYN/StreamDevice

asynRecord

* EPICS record that provides | —
access to most features of asyn, siccbon: asyn

including standard I/O interfaces o] conmu
* Applications: e | Rasscn: [0

Interface: | a=zynoctet L |

—Control tracing (debugging) Cancel wevarepest | Dore...

—Connection management

Cennectad Enabled aut ofennact

—Perform interactive 1/0 et] [semte] [evsocome

* Very useful for testing, S BT

debugging, and actual 1/O in P S ey p—
[off | ¢n | traceIoDevice [off |on | traceIOBscaps

many Cases E on | EraceITFilter IE on | EraceIlfHe:x
20 = i

off o | traceIcDriver I Truncate =Zize

If your IOC uses ASYN it 6% o] racerion seaseinfere

should provide at least one ot g #reeexeies o sraceanorine

off o | traceInfoPort

asynRecord to give clients = I
control of diagnostic o2 fon] racstofomhrasd

messageS! Trace file: | Unknown

!q‘.[s ASYN/StreamDevice

asynRecord — asynOctet devices

Configure serial port parameters

> asynSerialPo -0 x|

13LAB:serialy
asynOption: Supported

Interactive I/0 to serial device

>< asynOctet.adl Baud rate: za400 |
. Data bits: 5 =
15LAB:serial7 _ |
Stop bits: 1 4|

Timeout (sec): [[.0000 Transfer: writeskesd | Parity:
asynOctet interface: Supported Active arity: it -
Flow control: Hone =

Uutput Format: mscu -l| Terminator: [ir
HSCII - [‘tptptp
Length: Requested: [0 Actual: 6

Input Format: _sscit | Terminator: [ir
ASCIT :[1TP30, 001, 2TP{. 000, STP-0, 001, 4TP0, 000 |

Length: Requested: [0 Actual: 37 >< asynGPIBSetup.adl

EOM reason: Eos -
|1/0 Status:NO ALARK I/0 Severity:NO ALARM | - 13LAB:gpibl
asynGpib interface: Supported

Scan: Passive | Procesz | More... m |
GPIB address: B

Serial poll response: 0x0

Perform GPIB-specific operations

Universal Command Hone |

Addressed Command Hone |

!s“[s ASYN/StreamDevice

asynRecord — register devices

Same asynRecord, change to ADC port

>< asynRecord.adl

Read ADC at 10Hz with asynInt32 interface

’< asynRegister.adl

13LAB:serial7 13LAB:serial7
Port : [Ip330_1 Address: [0 Timeout (sec): [1,0000 Transfer: Read =
O | Connected Interface: Int32 UInt32Digital Float64
drvInfo:data Reason: o asynint3z 4| Supported Unsupported Supported
Interface: asundstet | Active Inactive Inactive
Cancel gueusRenuest | More... & | Uutput: I.O ID I-C'
Error: | OQutput (hex): [0 [0
Connected Enabled autoConnect Input: 32769 0 0
Conmect = | Enable = | autoConnect I Input Chex): 0x8001 0x0
traceMask tracelOMask Hask thex): AR
CT— (T — I1/0 Status:NO_ALARKM I/0 Severity:NO ALARM |
offl On traceError [OFf On | tracel0&SCTT Scan: . sscond | Process | More... m |
[0ff on | tracel0Device [0Ff 0On | tracel0Escape
[0Ff On | tracelOFilter [0Ff On|tracel(lHex
[0ff On | tracelllriver [z0 Truncate size
|OFf on | traceF low
Trace file: [Unknoun
!h"rg ASYN/StreamDevice

asynRecord — register devices

Same asynRecord, change to DAC port

>< asynRecord.adl

13LAB:serial 7

Port = [DAC1 Address: |0

Comnect | Connected
drvInfo: [data Reason: 0
Interface: asynFloatéd . |

More... & |

Cancel gueusReouest |

Error:
Connected Enabled autoConnect
Connect = | Enakle = I autoConnect = I
traceMask tracelOMask
|DH1 |DHO
offf On traceError [0Ff On | tracel0ASCIT

[0Ff 0On | tracellDevice [0Ff 0On| tracellEscape
[0Ff On | tracel0Filter [0Ff On|tracelOHex
[0ff On|tracellDriver [0 Truncate size
[0Ff On | traceF low

Trace file: [Unknoun

Write DAC with asynFloat64 interface

’< asynRegister.adl

13LAB:serial?

Timeout (sec): [1,0000 Transfer: writesRead |

Interface: Int32 UInt32Digital Floatbd
asurFlostes | Supported Unsupported Supported
Inactive Inactive Active
OQutput: [0 1§ 500
OQutput (hex): [0:0 ()
Input: 2048 0 500
Input (hex): 0x800 0x0
Mask (hex): [OxFFFFFFFE
I1/0 Status:NO_ALARKM I/0 Severity:NO ALARM |
Scan: Passive | Process | More... m |

!h"rg ASYN/StreamDevice

Tracing and Debugging

. asynRecord siochcm:asyn

e Standard mechanism for printing diagnostic messages
in device support and drivers

siocechem: asyn

* Messages written using EPICS logging facility, can be i S
sent to stdout, stderr, or to a file | comece | connecied
Device support and drivers call: deviato: | Rezeon: [0
— asynPrint(pasynUser, reason, format, ...) [
— asynPrintlO(pasynUser, reason, buffer, len, [cancer qrevereavect |
format, ...) Error:
— Reason:
* ASYN_TRACE_ERROR Connected Enabled
* ASYN_TRACEIO_DEVICE | Connect J| ‘ Enable J| |ncu3-'\utchDnnec'tJ
* ASYN_TRACEIO_FILTER tgiie“ask t;:zemﬂask
- ASYN_TRACEIO_DRIVER JLH . hlm S
: ASYN—TRACE—FLOW IE On | tracelCDevice ’E On | traceICEscape
- ASYN_TRACE_WARNING [OFF g | tracetomileer gl on traceionex
* Tracing is enabled/disabled for (port/addr) [of£ | [oa]| tracetobriver [g0 Trumcate size
* Trace messages can be turned on/off from iocsh, Joee [ssscsmion =
vxWorks shell, and from CA clients such as EDM via [o£t [0 | eracstiarnics Bd[on tracerafarine
asynRecord [oez | [on | traceTaforort
* asynOctet I/O from shell [o£z |[6r]| traceTafoscurce
E on | traceInfoThread
Trace file: | Unknown

‘h“[s ASYN/StreamDevice

Typical source file arrangement

* |Instrument support is placed in

. ../modules/instrument/<instrumentname>/Rx.y/

* Each <instrumentname>/Rx.y/ directory contains at least

Makefile

configure/
<InstrumentName>Sup/
documentation/

License

!S”[s ASYN/StreamDevice

Script to make this a little easier

mkdir /../modules/instrument/myinst/head
cd /../modules/instrument/myinst/head

/<path to ASYN support mopdule>/bin/<arch>/makeSupport.pl

-t streamSCPI myinst
Makefile

configure/. ..
myinstSup/

Makefile devmyinst.db devmyinst.proto
documentation/

devmyinst.html

* Afew changes to the latter 3 files and you're done!
* Notice that there are no C or C++ files.

— Running make just copies the .db and .proto files to the
support module top-level db/ directory.

!S”[s ASYN/StreamDevice

Introduction to Stream Device

Generic EPICS device support for devices with “byte stream”
communication.

RS-232 (Local serial port or LAN/Serial adapter)
TCP/IP

VXI-11

GPIB (Local interface or LAN/GPIB adapter)
USB-TMC (Test and Measurement Class)

A single stream device module can serve to communicate using
any of the above communication mechanisms.

ASYN/StreamDevice

Introduction to Stream Device

Command/reply messages:
- *IDN?

- SET:VOLT 1.2
— Non-ASCII ‘strings’ too

Command generation and reply parsing configured by protocols

Formatting and interpretation handled with format converters

— Similar to C printf/scanf format strings

- Custom converters too, but not easy

!s’[s ASYN/StreamDevice

Stream Device Protocols

* Defined in protocol files
* Plain ASCII text file
* No compiling — I0C reads and interprets protocol file(s) at startup

* Protocols are linear
- No looping

- No conditionals
- Rudimentary exception handlers
* Asingle entry can read/write multiple fields in one or many records

* Output records can be initialized from instrument at I0C startup

- With one big caveat — instrument must be on and
communicating at I0C startup

!s’[s ASYN/StreamDevice

StreamDevice EPICS Database

record(bo, "S(P)S(R)CLS") {

field (DESC, "SCPI Clear status")

field (DTYP, '"stream")

field (OUT, "@devmyInst.proto cmd(*CLS) $(PORT) S(A)")
}
record(longin, "S$S(P)S$(R)GetSTB") {

field (DESC, "SCPI get status byte")

field (DTYP, '"stream")

field (INP, "@devmyInst.proto getD (*STB) S (PORT) S(A)")

}

* DTYP=stream

* INP/OUT fields specify protocol file name, protocol entry (with
optional arguments), ASYN port and address.

* Address can be any value (typically 0) for single-address
Interfaces.

m{‘g ASYN/StreamDevice

CIRAS

StreamDevice Protocol File

cmd |
out "\s81";
}
getD {
out "\$§1?";
in "3%d";

* Protocol entries contain statements to produce output and
request input
* C-style escape sequence can be used ('\r', \n', \033', "\e")
* Format converters are similar to those used by C printf/scanf
* By default the VAL or RVAL field is used as the data
source/destination
* Can refer to any field, even in another record

m{‘g ASYN/StreamDevice

CIRAS

StreamDevice Additional Records

DTYP # stream for protocol entry additional records:

record(stringin, "$(P)S(R)Serial’)

{
field (DESC, '"Serial number")
field (DTYP, "Soft Channel'")
}
record(ai, "$(P)S$S(R)VP5")
{

field (DESC, '"+5V supply")

field (DTYP, "Raw Soft Channel")
field (EGU, "v")

field (PREC, "3")

field (LINR, "SLOPE")

field (ESLO, "le-3")

record(longin, "$(P)S(R)Templ")

{
field (DESC, "Sensor 1 temperature'")
field (DTYP, "Soft Channel")

!S”[s ASYN/StreamDevice

StreamDevice Protocol File

Protocol entries can be long — Use multiple lines and string
concatentation to improve readabllity

query {

out "Q'";,

in ":"
"SN=% (\$81Serial.VAL)39[*,],"
"UN=$% (\S$1Name.VAL)39[*,], "
"IP=%*[*,],"
"v3=%d, "
ny5=% (\$1VP5.RVAL)d, "
"V+12=% (\81VP12.RVAL)d, "
"v-12=% (\$§1VM12.RVAL)d, "
"T1=%(\$1Templ.VAL)d, "

"POH=% (\$1HOUI’SOD . VAL) g, "
"MAXTMP=% (\$1MaxTemp.VAL)qg,; "

}

Notice the use of the width field — guard against buffer overruns!

!q‘.[s ASYN/StreamDevice

StreamDevice Protocol File — Terminators

* Terminators can be set globally or per entry.

* Some interfaces can handle only a single character. If device
replies with \r\n' then specify rnTerminator='\n' and ignore the
\r' in the reply.

InTerminator = "\n";
OutTerminator = "\r';

Iﬂ“fs ASYN/StreamDevice

CIRAS

StreamDevice Protocol File — Initial Readback

* Useful to set initial value of output records to match the value
presently in the instrument.

* @init ‘exception handler’

* Often the same as the corresponding readback prototype entry

getF {
out "\$§1?";
in "$%f";

}

setF {

@init { out "\$1?", in "$f"; }
out n\$1 %f";

record(ao, "$(P)S(R)IntegrationTime")
{

field (DESC, "Reading integration time")
field (DTYP, "stream")

field (OUT, "@devKeithley6487.proto setF (NPLC) S (PORT) S(A)")

!q‘.[s ASYN/StreamDevice

Adding StreamDevice/ASYN instrument
support to an application

* This is easy because the instrument support developers
always follow all the guidelines — right?

* Most of these steps apply to pretty much any support
module, not just StreamDevice/ASYN instruments.

!s’[s ASYN/StreamDevice

Make some changes to
configure/RELEASE

* Edit the configure/RELEASE file created by makeBaseApp.pl
* Confirm that the EPICS_BASE path is correct
* Add entries for the instruments and ASYN:

DAWN_RUSH =/usr/local/epics/R3.14.12/modules/instrument/DawnRuSH/R1-
0
ASYN =/usr/local/epics/R3.14.12/modules/soft/asyn/asynR4-21

EPICS BASE=/home/EPICS/base

!s’[s ASYN/StreamDevice

Modify the application Makefile

xxx DBD += base.dbd
xxx DBD += stream.dbd

xxx DBD += drvAsynIPPort.dbd
(and/or drvAsynSerialPort.dbd, drvAsynUSBTMC.dbd, etc.)

xxx DBD += asyn.dbd

xxx LIBS += stream asyn

Isufs ASYN/StreamDevice

©

Modify the application database Makefile

Copy the instrument support database and prototype files to the
application <top>/db/ directory:

DB INSTALLS += S (DAWN _RUSH) /db/devDawnRuSH.db
DB INSTALLS += S (DAWN_RUSH)/db/devDawnRuSH.proto

!s’[s ASYN/StreamDevice

Modify the application startup script

epicsEnvSet ("CRATE ADDRESS","$ (CRATE_ADDRESS=crateapex01:23)")
(above line is optional, but makes it easy to override for testing)

epicsEnvSet ("STREAM PROTOCOL PATH","${TOP}/db")

drvAsynIPPortConfigure ("CRO", "$ (CRATE ADDRESS) TCP",0,0,0)

dbLoadRecords (""db/devDawnRuSH.db", "P=apexCrate:,R=1:, PORT=CR0")

* PR —PVname prefixes — PV names are (P)(R)name
* PORT-ASYN port name from corresponding devxxxConfigure command

!S”[s ASYN/StreamDevice

Lab Session
Control ‘network-attached device’

* Host www.xxx.yyy.zzz — TCP Port 24742
* \n' command terminator, \r\n' reply terminator
* *IDN?
* Returns device identification string (up to 100 characters)
« LOAD?

* Returns three floating-point numbers separated by spaces
(1, 5, 15 minute load average)

* ON?
* Returns OFF/ON (0/1) status

* VOLTS?
- Returns most recent voltage setting

CURR?
- Returns current readback (x11A)

!s’[s ASYN/StreamDevice

Lab Session
Control ‘network-attached device’

* ONJ[O, 1]

* Turns supply OFF/ON (0/1)
* VOLTS x.xxxx

* Sets voltage (x10V range)

!s’[s ASYN/StreamDevice

	ASYN Device Support Framework
	ASYN
	What is it?
	asyn Architecture
	Control flow – asynchronous driver
	Control flow – synchronous driver
	ASYN Components – asynManager
	ASYN Components – asynCommon
	ASYN Components – asynOctet
	ASYN Components – asynGpib
	ASYN Components – asynRecord
	asynRecord
	asynRecord – asynOctet devices
	asynRecord – register devices
	Slide 15
	Tracing and Debugging
	Recommended source file arrangement
	There’s a script to make this a little easier
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Make some changes to configure/RELEASE
	Slide 30
	Slide 31
	Modify the application startup script
	Slide 33
	Lab session – Control ‘network-attached device’

